

International Journal of Multidisciplinary

Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 7.521 Volume 8, Issue 1, January 2025

© 2025 IJMRSET | Volume 8, Issue 1, January 2025| DOI: 10.15680/IJMRSET.2025.0801030

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 211

An Efficient Approach of Software Clone

Detection and Risk Assessment

Dr.A. Senthilkumar

Assistant Professor, Department of Computer Science with Data Analytics, Sri Ramakrishna College of Arts &

Science, Coimbatore, India

ABSTRACT: The paper helps to identify the quality of the software using different metrics. The main aim of this

project is to create an analysis tool to find the quality of the software. The user can identify whether their program is a

quality one or not. This work contains 5 modules, which are as follows Software project selection module, LOC (Lines

of Count) calculation module, Methods and attribute extraction, Quality analysis and report. The first module in the

project is the program/code selection process, which the user needs to test. The user can give any program file or

software files to test the quality. The next module is calculating LOC ie, line of code calculation which calculates total

number of lines used in the program and finding unused lines from that. This module extracts total functions/methods

used in the program, using this process; user can get the details of the objects, variables and a method Based on the

above modules, the quality of the software has been tested. This gives the overall quality of the program in percentage.

The report gives the graphical representation of the quality verification data. And also list of tests made by the user will

be stored in the database for future references

I.INTRODUCTION

As demand of software increases, software development organizations are in the greater need to develop products

rapidly. This in turn demands highly potential software developers or knowledge workers in different technologies.

Since we have multiple technologies for code development, discover and elicit code according to the requirement is the

initial task and supply appropriate code to the need is focused in the next phase. Code knowledge base consists of

valuable data that can be inferred for variety of usages. So far research focus was on topic models, association rules,

and heuristics to mine code repositories for traceability and for monitoring changes in source code [2, 3, 4, 5]. It is

challenging to identify the code fragment s purpose for every code fragment in the knowledge base with the focus of

improving programmer’s potential in terms of code construction. Code knowledge base consists of code segment and

its purpose. Knowledge mapping to the current necessity of the project requirement scenario is very important and it

has to be substantially substituted by the time of software development. Programmers often ignore to find optimum

code; their main focus is on completion of modules in the projects.

 Knowledge base consists of code segments which are extracted from code logs according to comment lines or syntax

lines (symbols). The purpose of the code segment is known only when the developer documents the purpose either as

comments or as a documentation note. In this KM framework knowledge acquisition happens only from the code files,

so there is no detail documentation are acquired, Now the query is whether the extracted code segment can fulfill any

software requirement or not, Only when the purpose of the code is known, it can be utilized.

In order to understand the extracted code, precise perception for a particular code segment is essential. Constraint

satisfaction and retrieval are the steps followed for supplying solution code knowledge. Code retrieval from knowledge

base is based on key word/ text search that acts as input parameter for querying in the knowledge base. Substantial

supply of code knowledge is an experimental process for agile code building in software industries. This article shows

an overview of the process of substantial supply of code knowledge and describes the model which is designed for

substantial supply of code knowledge. User specifies the requirement in simple sentence, our model explains the

technique to discover and elicit the appropriate code from the knowledge base by mining through the keywords. Any

search application, has some typical phases with indexing on right and retrieval of results on left. This work proposes a

solution to the coding problem that makes it easier for programmers to follow the offered recommendations during

development. The premise is that source code projects can be mined to create a knowledge base and build a suggestion

© 2025 IJMRSET | Volume 8, Issue 1, January 2025| DOI: 10.15680/IJMRSET.2025.0801030

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 212

model that provides substantial optimum code.

To that end, this work features a model that analyzes source code and uses data from the Solution Knowledge Database

(SKB) to create feature sets for recognizing a set of code patterns. Specifically, source code is represented using an

Abstract Syntax Tree [5], which provides the ability to extract statements. This work is based on KM Trajectory

Service Frame work [7] which is framed to reduce the dependency on human resources in software development

organizations. Knowledge Champions and KM team members have to contribute their time in creation and

maintenance of solution knowledge base. This provides functional KM solutions for software process improvement.

This work proposes the extraction of code sets from project repositories to present to the user a set of methods that

supplies code segment for each requirement.

• Software development process, utilizes code data from the Solution knowledge Database.

• Knowledge Map algorithm processes thousands of code fragments, discover and supply the required ones.

• Discovery of the required code fragment from code base.

• Utilization of code fragment increases the success count each time.

II. PROCESS DESCRIPTION

The implementation phases of this project are construction, operation and the installation lies on the new system. The

most crucial and very important stage in achieving a new successful system and is giving confidence on the new system

that it will work efficiently and effectively. The following modules are involved to predict the clone in the respective

software.

A. Software project selection module:

 The first module in the project is the program/code selection process, which the user needs to test. The user can

give any program file or software files to test the quality.

B. LOC (Lines of Count) calculation module:

 The next module is calculating LOC ie, line of code calculation which calculates total number of lines used in the

program and finding unused lines from that.

C. Methods and attribute extraction

 This module extracts total functions/methods used in the program, using this process; user can get the details of the

objects, variables and methods.

D. Clone detection using operation code sequences:

 This module finds the duplication between the software’s using the operation code sequences. Using this module,

the admin can detect duplicate projects and programs easily.

E. Quality analysis

 Based on the above modules, the quality of the software has been tested. This gives the overall quality of the

program in percentage. The user can check whether the given program is efficient or not. Using this module two or

more program will be compared with time and use of unique code features.

F. Report.

 The report gives the graphical representation of the quality verification data. And also list of tests made by the user

will be stored in the database for future references.

III. RESULTS AND DISCUSSION

All the modules were tested individually using both test data and live data. After each module was ascertained that it

was working correctly and it had been "integrated" with the system. Again the system was tested as a whole. We hold

the system tested with different types of users. The System Design, Data Flow Diagrams, procedures etc. were well

documented so that the system can be easily maintained and upgraded by any computer professional at a later.

© 2025 IJMRSET | Volume 8, Issue 1, January 2025| DOI: 10.15680/IJMRSET.2025.0801030

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 213

Fig 1 Design for OP Code

Fig 2 load the data

© 2025 IJMRSET | Volume 8, Issue 1, January 2025| DOI: 10.15680/IJMRSET.2025.0801030

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 214

Fig-3 Count of Opcodes

© 2025 IJMRSET | Volume 8, Issue 1, January 2025| DOI: 10.15680/IJMRSET.2025.0801030

IJMRSET © 2025 | An ISO 9001:2008 Certified Journal | 215

Fig-4 Results of Clone detection

IV.CONCLUSION AND FUTURE WORK

The proposed SQA system used Opcode with sequence and frequency analysis patterns generated by disassembling the

inspected executable files to extract features from the inspected files, the system extracts the methods and body content

to get the opcodes. Opcode extraction algorithms with sequence analysis are used as features during the testing process

with the aim of identifying unknown malicious code and quality of the program. The proposed system performed an

extensive evaluation using a test collection comprising more than 30 methods with 4 assembly files. The evaluation

consisted of three experiments. In the first experiment, this found that the frequency and sequence representation then it

will count the opcodes and provides the results. The proposed tool has been named as SQA, which provides a time-

consuming test results for malicious data finding.

REFERENCES

[1] Eytan Adar. GUESS: a language and interface for graph exploration. In Proceedings of the 2006 Conference on

Human Factors in Computing Systems (CHI’06), pp. 791-800, Montr´eal, Qu´ebec, Canada, April 2006. (PDF)

[2] Eytan Adar and Miryung Kim. SoftGUESS: Visualization and Exploration of Code Clones in Context. In the

proceedings of the 29th International Conference on Software Engineering (ICSE’07), Tool Demo, pp.762-766,

Minneapolis, MN, USA, May 2007 .

[3] R. Agrawal and R. Srikant. Mining Sequencial Patterns. In Proceddings of the 11th Infernation Conference of Data

Engineering (ICDE’95), pp. 3-14, Taipei, Taiwan, March 1995.

[4] Alfred Aho, Ravi Sethi and Jeffrey Ullman. Compilers, Principles, Techniques and Tools. Addition-Wesley, 1986.

[5] A. Aiken. A system for detecting software plagiarism (moss homepage). URL http:

//www.cs.berkeley.edu/aiken/moss.html. 2002.

[6] Raihan Al-Ekram, Cory Kapser, Michael Godfrey. Cloning by Accident: An Empirical Study of Source Code

Cloning Across Software Systems.International Symposium on Empirical Software Engineering (ISESE’05), pp. 376-

385, Noosa Heads, Australia, November 2005.

[7] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, Ettore Merlo. Modeling Clones Evolution through

Time Series. In Proceedings of the 17th IEEE International Conference on Software Maintenance (ICSM’01), pp. 273-

280, Florence, Italy, November 2001. (PDF)

[8] G. Antoniol, U. Villano, E. Merlo, and M.D. Penta. Analyzing cloning evolution in the linux kernel. Information

and Software Technology, 44 (13):755-765, 2002.

[9] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How Clones are Maintained: An Empirical Study. In

Proceedings of the 11th European Conference on Software Maintenance and Reengineering (CSMR’07), pp. 81-90,

Amsterdam, the Netherlands, March 2007.

[10] Brenda S. Baker. Finding Clones with Dup: Analysis of an Experiment. IEEE Transactions on Software

Engineering, Vol. 33(9): 608-621, September 2007

[11] Kumar, Anil, et al. "An intrusion identification and prevention for cloud computing: From the perspective of deep

learning." Optik 270 (2022): 170044.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

